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Synopsis
The energy-momentum complex, which was formulated in terms of tetrad variables in 

an earlier paper in Mat. Fys. Skr., is applied to the exact asymptotic solution of Einstein’s 
field equations for an axi-symmetric system given by Bondi and his collaborators. The for
mulae derived for the gravitational energy radiated per unit time and for the total energy 
of the system at any time confirm a conjecture by Bondi. The transformation properties of 
the total momentum and energy for a non-closed system under asymptotic Lorentz transfor
mations are derived and the approximate plane gravitational waves at large distances from 
a radiating system are investigated. As regards energy and momentum, such waves are clo
sely analogous to electromagnetic waves emitted by a system of accelerated electrically 
charged particles.
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1. Introduction and Summary

Since the first years of Einstein's theory of gravitation the question whether 
or not a system of accelerated massive bodies loses energy by emission 

of gravitational radiation has given rise to many controversial discussions. 
The main reasons for this somewhat unusual situation in physics are the 
following. On account of the non-linear character of Einstein’s field equa
tions it is difficult to find sufficiently general exact solutions of these 
equations and most of the discussions on gravitational radiation have 
therefore been based on solutions of the “linearized” field equations. How
ever, in many cases, such solutions have been shown to be good approxima
tions to the solutions of the exact field equations only over limited parts of 
space and it has been doubted whether the results obtained by means of 
these solutions can be fully trusted. Moreover, until recently one did not 
have a consistent expression for the gravitational energy current which, in 
analogy with Poynting’s theorem, could be used for calculating the amount 
of energy carried away by the gravitational waves.

It is well known that the energy-momentum complex 0*  given by 
Einstein many years ago does not allow to calculate the distribution of 
the energy and the energy flux in a physically satisfactory way, since the 
result depends on the spatial coordinates used. But even if one is interested 
only in the total energy and its possible variation in time, such as in calcula
tions of the energy emission from an insular system, the complex tøf is 
applicable only in special systems of coordinates. In the trivial case of a 
completely empty space, for instance, Einstein’s expression gives an infinite 
value for the total energy when calculated in polar coordinates, in contrast 
to the correct value zero obtained if one uses Cartesian coordinates. This 
means, strictly speaking, that this expression is not in accordance with 
the general principle of relativity according to which all relations between 
measurable physical quantities, such as the total energy and the components 
of the metric tensor, must have the same form in all systems of space-time 
coordinates.

1*
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The difficulties mentioned above have now been overcome. In a recent, 
most interesting paper, Bondi et al.(1) have been able to give the exact form 
of the metric at large spatial distances from an axi-symmetric, but other
wise arbitrary, insular system of matter that emits gravitational waves into 
the surrounding empty space, and, in a paper from 1961(2), we arrived at 
an expression T/ for the energy-momentum complex which is in accord
ance with the principle of relativity and which therefore meets the objec
tions raised against Einstein’s expression 0^. In the present paper, the 
complex is applied to the solutions of Bondi et al. Thereby we obtain 
consistent expressions for the total momentum and energy as well as for 
the time variations of these quantities in the case of an arbitrary axi-sym
metric system emitting gravitational waves. Some of the results of these 
calculations have been published previously in a note in Physics Letters(3).

In section 2, we give an outline of the basic theory and a survey 
of earlier results as well as some new results regarding the energy-momen
tum complex. In contrast to the complex 0f* which can be expressed 
directly in terms of the metric components and its derivatives, the complex 
T^' is given directly in terms of tetrad fields which are determined by the 
metric only up to arbitrary Lorentz rotations of the tetrads. Tffc is not in
variant under such rotations. However, as will be shown in detail in section 
6, the values of the total energy and momentum obtained by means of 
T..fc are invariant under all Lorentz rotations of the tetrads which are in 
accordance with the boundary conditions formulated in section 2.

Section 3 contains a survey of the main results obtained by Bondi ct al. 
in(1) and it is shown that Einstein’s expression 0/ gives unreasonable re
sults for the energy radiation and (he total energy in the system of co
ordinates adopted in(1). In contrast to this result it is shown, in section 4, 
that the complex Tf* gives a consistent value for the energy radiation, which 
confirms a conjecture by Bondi regarding the total energy radiated by an 
axi-symmetric system. In addition to that, the intensity of the energy radia
tion in different directions is determined.

The total energy and momentum at any time are defined and calculated 
in section 5 and, as regards the energy, (he result confirms a conjecture 
by Bondi in part I) of (1). The change in the total momentum per unit time 
is shown to correspond to a recoil effect of the emitted gravitational radia
tion of the same kind as for emission of photons.

In section 7, we investigate the transformation properties of the total 
momentum and energy of the matter system as well as of the emitted radia- 
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tion under asymptotically Lorentzian transformations. Finally, il is shown 
in section 8 that the gravitational radiation at large distances from the 
system has the form of approximate plane waves with an everywhere 
positive energy density and a momentum density equal to the energy cur
rent density divided by c1 2 like in the case of a plane electromagnetic wave. 
Details of the calculations are collected in the Appendix.

1. T/(x) is an afine tensor density depending algebraically on the gravita
tional field variables and their derivatives of the first and second orders 
and it satisfies the divergence relation

(2-3)

2. A matter system for which the metric asymptotically at large spatial 
distances from the system is of the Schwarzschild type is called a closed

2. The Energy-Momentum Complex

In general relativity the energy and momentum of the complete system 
of matter plus gravitational field is described by an energy-momentum 
complex of the form

V-v + A (2-1)

Here, is the energy-momentum tensor density of the matter, which is 
a function of the matter field variables and the gravitational variables, 
while the complex of the gravitational field is an algebraic function of 
the gravitational field variables only. also appears as the source of the 
gravitational field in Einstein’s field equations

= «2/ (2.2)

which determine the metric for a given matter distribution. If we eliminate 
in (2.1) by means of the field equations, the complex T/ appears as 

a function of the gravitational field variables only.
A satisfactory solution of the energy problem in general relativity re

quires that the energy-momentum complex satisfies the following conditions: 
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system. 111 this case we can nse coordinates which are asymptotically 
rectilinear and then we must require that the quantities*

* In the following, we shall use natural units in which the velocity of light c and New
ton’s gravitational constant k are equal to one. Consequently, Einstein’s constant x has the 
value 8 7t. Further, Latin indices run from 1 to 4, Greek indices from 1 to 3, and the sig
nature is e, = {1,1,1,-!}.

= jj jj \ Tz4 dx1 dx2 dx2 (2.4)

x*  = const.

are constant in time and that they transform as the covariant compo
nents of a free vector under linear space-time transformations. This 
property is essential for the interpretation of Pi = ^Pl-H^ as the total 
momentum and energy vector.

Tfc = T4fc is transformed like a 4-vector density under the group of purely 
spatial transformations

xl = fl(x*),  x4 = x4 (2-5)

which leave the time scale and the system of reference unchanged. This 
property makes the “energy content of any volume of space V”, i.e.

- -((( T44 dx1 dx2 dx2 = - Ç H T44 dx1 dx2 dx2 (2.6)

V V

independent of the spatial coordinates used in the evaluation of the 
integral. Thus, 3. is the condition of localizability of the energy in a 
gravitational field.

The classical expression for the energy-momentum complex given by 
Einstein many years ago (4) is of the form

+ (2.7)

Here, is a homogeneous quadratic function of the first-order derivatives 
of the metric tensor which is obtained from the Lagrangian

by the equation
(2-8)

(2-9)
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The explicit expression for is

Å r'ml<F9ta),< - Ä<‘ß£>■ (2.10)

If we eliminate in (2.7) by means of the field equations (2.2), the 
complex 0*  can be written, as was first shown by v. Freud<5>, in the form

(2.11) 
with the superpotential

-7.“-—[(-</)(/“fl"“-s'"/’")],m- (2.12)

As is well known, Einstein’s expression 0/’ satisfies the conditions 1. 
and 2., but not the localizability condition 3. Therefore, Einstein came to 
the conclusion that, in general relativity, the energy content Hv of a finite 
part of space has no exact physical meaning.
Only the total energy

WK= - U J 044 dx1 dx2 dx\ (2.13)

obtained by integrating over the whole 3-dimensional space with / = ,r4 = 
const., should have a well-defined physical meaning. It has been argued 
that this is quite natural, since it is difficult to imagine how one could 
measure the energy contained in a small part of the system. On the other 
hand, the total energy is certainly a measurable quantity, since the total 
mass can be measured, for instance, by weighing the system on a balance 
or by measuring its reaction under the influence of external forces. There
fore, it would seem that Einstein’s point of view is in accordance with 
the nature of the problem.

Nevertheless, one may have some doubts as to the validity of the ex
pression (2.13) for the total energy, since it is not in accordance with the 
general principle of relativity. According to this principle, any relation be
tween measurable physical quantities, such as the total energy or mass and 
the components of the metric tensor, must have the same form in any system 
of coordinates. In other words, we can only trust an expression like (2.13) 
if it represents the energy in any system of coordinates, and this is ob
viously not the case. Take, for instance, two systems of coordinates con
nected by a purely spatial transformation (2.5); then, the total energy must 
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certainly have the same value in these two systems, for the result of an 
experiment, which allows to determine the total mass, is of course completely 
independent of the way we choose to name the different points in space. 
However, since the complex 0f* does not satisfy the condition 3., the equa
tion (2.13) gives in general quite different values for the total energy in the 
two systems of coordinates of the type considered.

As was pointed out long ago by Bauer(6), this holds even for the trivial 
case of a completely empty space where space-time is Hat. In Cartesian 
coordinates, HE is here zero as it should be, but if we use the metric corre
sponding to polar coordinates in the evaluation of HE, we get an entirely 
different result. In fact, the integral in (2.13) is divergent in this case, and 
it should be noted that the divergence arises from the large distances r and 
not from the singular point r = 0. A similar situation we meet in the case 
of an arbitrary physical system, and this cannot be considered satisfactory 
in a general theory of relativity.

The importance of the restricted group of transformations (2.5) lies only 
in the fact that we can be sure that the total energy must be unchanged 
under these transformations. For a more general transformation where the 
time scale and the motion of the frame of reference are changed, as for 
instance for a simple Lorentz transformation, we must in general expect 
a change in the total energy of the physical system. The invariance of the 
total energy under the transformations (2.5) requires that the energy
momentum complex satisfies also the condition 3. At first sight, one might 
think that the condition 3. is too stringent if we give up the idea of locali
zability and only regard the total energy as a measurable quantity, for 
with 3. the equation (2.6) is valid for any finite volume V and not only for 
V equal to the whole 3-dimensional space. However, it should be remem
bered that the system of coordinates in a given system of reference often 
consists of an “atlas” of different overlapping local maps, inside which the 
components of the metric tensor are regular (7), and it is then essential that 
the equation (2.6) holds for any volume V which lies inside a region of 
overlapping of two coordinate patches.

It seems therefore that a satisfactory solution of the energy problem in 
accordance with the general principle of relativity requires the existence of 
an energy-momentum complex with all the properties 1—3. Now, it can 
be shown (8) that, if the gravitational variables are taken to be the com
ponents of the metric tensor, the only complex which satisfies the conditions 
1. and 2. is Einstein’s expression 0k, and it is thus impossible also to have
3. satisfied. Therefore, it seems that we are in a hopeless situation. However, 
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gravitational fields may also be described by so-called tetrad fields instead 
of by the metric tensor. There are even certain matter systems where one 
has to use a tetrad description of the gravitational field. This holds, for 
instance, in the case of a fermion field under the influence of a gravitational 
field, where the latter has to be described by a tetrad field. In fact, in the 
usual generally covariant form of the Dirac equation (9), the gravitational 
field is represented by a tetrad field and not directly by the metric. It is 
therefore natural to assume that the tetrad field variables are the fundamental 
gravitational variables and, as was shown in reference 2, with this assump
tion it is possible to define an energy-momentum complex which satisfies 
all the conditions 1.-3.

Let h(a\ be the covariant components of the a’th tetrad vector which is 
space-like for a = 1, 2, 3 and time-like for a = 4. Further, let us put

A(a)< = »?(«&) C2-14)
where is the constant diagonal matrix with the diagonal elements 
{1 , 1 , 1, — 1). Then, the connection between the tetrad field and the metric 
field at every point is given by

k = flik (2-15)

(2.16) 
Further, we have

)/^=|h|, (2.17)

where h = det is the determinant with 7i(a)i in the a’th row and /’th 
column.

The starting point of the developments in (2) was the remark that the 
curvature scalar density fR, when expressed in terms of the tetrad field 
by means of (2.15), takes the form

9t=ß + f), (2.18)

where 1) has the form of a usual divergence, which is of no importance in 
the variational principle, and

S - I h I [h(a)r. hm'. ,b" . (2.19)

Here, the semicolon means covariant differentiation so that the Langrangian 
2 is a scalar density under arbitrary space-time transformations (a true 
scalar density) in contrast to the Lagrangian ß£ in (2.8) which has this 
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property under linear transformations only. Further, since the Christolfel 
symbols by (2.15) are seen to be linear functions of the first-order derivatives 
of the tetrad variables, the same holds for h(a)r;s. Hence, £ (just as QE) 
has the important property of being a homogeneous quadratic function of 
the first-order derivatives of the gravitational field variables.

The energy-momentum complex which, in (2), was shown to satisfy 
the conditions is

T*  = +1 I 1 4Z

with

1
2z

(2.20)

In terms of the tetrad fields, Einstein’s field equations take the form

(2.21)

where
<5£ 

dip
complex Tf*

is the variational derivative of £ with respect

is derivable from a superpotential i.e.

to The

with
(2.22)

d£
(2.23)

(see Eqs. (2.31)-(2.38) in <2), and also <10)).
The explicit expressions for the complex and the superpotential are 

(Eqs. (2.39), (2.40) in (2))

(2.24)

u<“ - (4 A'»’1 - /><“> “ ) l,’m.,]. (2.25)

In contrast to the superpotential htkl in Einstein’s theory, the superpotential 
is seen to be a true tensor density of rank 3.
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It is convenient to introduce the tensors

Vikl ~ i^(a)k;l~ ~Vkil

Aiki = Vikl~Vilk = h(a\(h(a)k,l~h(a)k,l) = ~ Aak (2.26)
^k ~ V\i - ^ki ~ 1 ^(a) k; i

and the symbol
A,-* ”“ 'W., (2.27)

which is connected with the Christoffel symbol by the relation

^ki = ^ki + v\i ■ (2.28)

In terms of these quantities the expressions (2.19)-(2.25) take the form 
(Eqs. (3.12), (3.14), (D 34) in (2))

2-|A|[zr«/"-®,0r] (2.29)

U « _ 1A1 [yH _ gt <pi + gi tpK] (2.30)
X

t? _ LAI [/» _ ø< + J1)( ø»] _ J- d*S  (2.31)
or z x

iit=Uji + U/,d’“„, (2.32)

where 11/’ is the tensor density

U(* - Amll - <Pt & + A* a 0'] - <5? S. (2.33)

All the quantities introduced here are true tensors or tensor densities, 
except and T/' which deviate from a true tensor density by the term 
UrøwZl™. Thus, we get the following transformation law for T/ and t/ 
under an arbitrary space-time transformation (.rl)-> (.rfî) (Eq. (1). 37) in (2)):

where J is the Jacobian of the transformation

(2.35)
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From (2.34) we see that the most general group of transformations under 
which the quantities T* = T4* transform as a 4-vector density are those for
which

dxr
^4=%. (2-36)
ox

This also follows from (2.22) because U/* is a true tensor density, i.e.

(2-37)

on account of (2.36). Thus, U4ÄZ is an antisymmetric tensor density of rank
2 under all transformations of the type (2.36), which means that

Tfc = U4w z (2.38)
is a vector density.

The most general transformation of the type (2.36) has the form

.r t = f(^) 

a/4 = <r4 + /’(.rx),
(2.39)

where /'and / are arbitrary functions of the spatial coordinates. It contains 
the group of purely spatial transformations (2.5) as a subgroup. I nder the 
latter group the fourth component of Tfc, i.e. T44, is a scalar density, which 
means that

Hv = - ( H T44 d.r1 d.v2 d.r3 (2.40)

v
is invariant.

If we now introduce the expression T44 = ll44\z int° (2.40) we get, by 
means of Gauss’ theorem,

wr--GU44ÅdsA, (2-41)
F

where the integration is extended over the boundary surface F of the volume
V. Here,

=0^(1^ (2-42)

where 0;^ is the 3-dimensional Levi-Civita symbol and dx*,  ôx^ are in
finitesimal 3-vectors spanning the surface element on F. Since U44^ trans- 
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forms as a 3-vector density under the group of purely spatial transforma
tions (2.5), U44/dS; is invariant, which again shows that Hv in (2.41) is 
invariant under these transformations. The expression (2.41) is valid also 
if the spatial system of coordinates is composed of different coordinate 
patches.

Let us now consider the integrals

(PF)t = C Ü*  Tt4 dx1 dx2 dx3 = H ( Â dx1 dx2 dx3 (2.43) 
J • t’ J J •

V V

obtained from (2.4) with z = t by integrating over a finite part V of 3-space. 
Then, if Ut4/ is continuous inside V, we get again by means of Gauss’ 
theorem

(2.44)
F F

Since Ufw is a true tensor density, it follows that

At(æ)^Ut4ÂdSÂ (2.45)

at each point on F transforms as a 3-vector under the group of spatial trans
formations (2.5). Nevertheless, the sum (or integral) of the components of 
the vectors .4( in different points of F, of course, has in general no simple 
physical meaning. However, this should not be regarded as a defect of the 
theory, since we have a similar situation already in special relativity if we 
use curvilinear coordinates in space.

In the limit of special relativity where space-time can be regarded as 
Hat, we have, in a system of inertia a momentum density given by the com
ponents 2t4 of the matter tensor density, which transform as a 3-vector 
density under arbitrary spatial transformations, so that

= $t4 dx1 dæ2 d.r3 (2.46)

are the covariant components of a 3-vector. Nevertheless, the three integrals

■ $ $ $ s‘4 (x) <te2 dr3 ■ S S i B‘ (-r) (2-47)
V V

have in general no physical meaning at all.
This will be the case only in a system of rectilinear coordinates where 
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the integrals (2.47) are the components of the total linear momentum inside 
F, which is a free vector Pv^m\ Now, a free vector can by parallel displace
ment be attached to any point p in space, and in a system of rectilinear 
coordinates its components are the same in every point. However, by a 
transformation to curvilinear coordinates, the components of the free vector 
PF(m) will be different in different points p.

Of course, this does not prevent us from using curvilinear coordinates, 
but then we have in (2.47) to substitute the arithmetical sum of the vector 
components of the vector B by the geometrical sum of the vectors B(x). 
Thus, the components of the free vector in a point p are obtained by 
parallel displacement of the vectors P(æ) to the point p, i.e.

= J «*(/>),  (2.48)

V

where the B*  (p) are the components of the vectors obtained by parallel 
displacement of the vectors 7It(x) from the various points (.r) to the point p.

In special relativity, this procedure leads to a unique result in any 
system of coordinates, since the space is Hat and the result of a parallel 
displacement therefore is independent of the curve along which the dis
placement has been made. However, in general relativity where the space 
may be curved, it would seem impossible in this way to get an unambiguous 
expression for the linear momentum of a physical system in a given system 
of reference. This is certainly also true if we consider the matter alone. Il 
is different, however, if we consider the momentum of the complete system 
of matter plus gravitational field, in which case it turns out to be possible 
to get a unique expression for the total linear momentum at least for any 
insular system where the matter is confined to a finite part of space.

The reason for this is the following. For an insular system, space-time 
can be regarded as flat at sufficiently large spatial distances from the system 
and, consequently, we may introduce coordinates which are al least asymp
totically rectilinear. Further, in contrast to the integrals (2.47), the quantities 
(Pv\ in (2.44) have the form of a sum of vector components At situated on 
the boundary surface F. Therefore, if we make the volume V so large that 
F lies entirely in the region where the space may be regarded as Hat, the 
situation is exactly as in special relativity. In a system of coordinates which 
is rectilinear in this region, the components of the total momentum of the 
physical system inside the surface F are consistently given by (2.44), i.e.
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by the arithmetical sum of the components of the vectors At on F. The total 
momentum PF is a free vector and, since the quantities At in (2.44) are 
3-vectors under spatial transformations (2.5), we get the components 
(Py ),(/*)  in a point p in arbitrary spatial curvilinear coordinates by parallel 

—> e e
displacement of the vectors A(.r) to the point p, i.e.

uy).(p)-$ÜA*(/>)  (2-49)
F

on the analogy of (2.48). This gives a unique result provided that the 
curves along which the displacements are made are chosen to lie entirely 
inside the region where the space may be considered as flat.1

If we had used Einstein’s expression 0*  for the energy-momentum 
complex instead of Tf*,  the just mentioned procedure would not have given 
consistent results for, in this case, the equations (2.43), (2.44) would be 
replaced by

(P£)( = H jj 6\4 dr1 dx2 dx3 = jj j ht42 dSÅ (2.50)

V F

and, in contrast to A( in (2.44), (2.45), the quantity 7q4^ dSj does not trans
form as a 3-vector under the transformations (2.5) except if the functions 
fl(x?e') are linear. In curvilinear coordinates we would therefore not know 
how to perform the above mentioned parallel displacement, and we can 
only hope that the equations (2.50) give correct results for systems of co
ordinates which are asymptotically rectilinear. The results obtained in 
sections 4 and 5 of the present paper seem to justify this hope.

Finally, it should also be remarked that the preceding considerations are 
somewhat loose, since we have assumed that the space is flat for a suffici
ently large surface F. Actually, the flatness of the space at large spatial 
distances from an insular system is only an asymptotic property and we 
have in each case to state more precisely how large the surface F has to 
be chosen.

There is another important question which we have disregarded so far. 
For a given tetrad field, the metric is determined by the equations (2.15), 
but for a given metric tensor gik(x) the tetrad field is not uniquely deter-

1 In a forthcoming paper it will be shown that the preceding considerations regarding 
the 3-momentum vector in curvilinear coordinates inside a given system of reference can easily 
be carried through also for the 4-momentum Pi in the 4-dimensional space, which enables us 
to give a meaning to Pi for arbitrary curvilinear space-time coordinates. 
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mined by these equations. If (x) represents a solution, then the tetrads

(2.51)

(2-52)

(2.53)

(2.54)

(2.55)
with

(2.56)x

(2-57)

usually assumed that all measurable physical quantities and all 
between such quantities must be invariant under arbitrary Lorentz 
(2.51) of the tetrads. In the case of the covariant Dirac equation 

measurable quantities such as the charge

also satisfy the equations (2.15), providedth at the scalar functions f2<a)(&)(.r) 
at each point (,r) satisfy the orthogonality relations of a Lorentz rotation, i.e.

(the indices in parenthesis are lowered and raised by the same rule as in 
(2.U)).

It is
relations 
rotations 
for fermion fields, for instance, 
and current densities are unchanged under the transformations (2.51), in 
contrast to the field function y (.r) which transforms as an ‘undor’. Now, the 
components of the complex are invariant under (2.51) only if the rota- 

(0)
tion coefficients are constants i.e. independent of (.r). In fact, from
the definition (2.26) of yikl one finds at once the transformation law

Finally, we get from (2.22) the following transformation equation for the 
complex under tetrad rotations (2.51):

V = u.*\ 7 = V + y//7 (2.58)

and the last term is in general not zero, unless the rotation coefficients 
£?(a)(0) are constant.

where the tensor Xikl = - Xkil is given by

— h[a>> k. [ - yikl + Xikl,

Y = p(c) Q hW /?<D ^ikl (a) (cb), I ui nk ■

Further, since h = |/-ç is invariant under (2.51), the transformation of the 
superpotential (2.30) is given by

ll/7 = ll/7 + Ytkl

yk = yik = ()(c) 0 i(a)ij(b)k
i ~~ (a) (cb), i 11 11
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Thus, Einstein’s held equations which determine the metric only do 
not allow to calculate the complex T/ uniquely. Therefore, if one regards 
the energy density or more generally as a measurable quantity, one 
will try to set up further equations which, together with Einstein’s held 
equations, allow to determine the tetrad held so accurately that T^ can be 
calculated uniquely. Geometrically speaking, besides the curvature of 4- 
space which is determined by Einstein’s equations, we need a set of sup
plementary equations which allow to calculate the torsion of the space (or 
the tetrad lattice), i.e. the tensor yikl.

In the trivial case of a completely empty space where is everywhere 
zero, one usually assumes that space-time is Hat, i.e.

^iklm=^- (2.59)

In that case we must assume that also the torsion is zero, i.e.

Viki = 0 or hta,\ = 0 > (2.60)

for only with this assumption will Tffc be equal to zero, as we should have 
for a completely empty space. Since Rikim is a linear function of the co
variant derivatives of the of the second order, the equations (2.60) are 
compatible with (2.59). In contrast to 0k which is different from zero in 
curvilinear coordinates, the covariant equations (2.60) ensure that = 0 
in all systems of coordinates.

The equations (2.60) can also be written

where
Z (abc) 6 ’ (2.61)

7(abc) ~ Vikl ^\a) ^(b) ^(c) ~ (a) k; I rfb) ^(c) (2.62)

are the Ricci rotation coefficients. This means that the tetrad field in a com
pletely empty space has to be chosen so that ‘absolute’ parallelism with 
respect to these tetrads (see reference 2, section 5) coincides with the Levi- 
Civita parallelism which is also global in the case of a flat space, where 
we can use pseudo-Cartesian or Lorentzian coordinates. In such coordinates

9ik 9ik (2.63)

and (2.60), (2.61) mean that we may choose

Mat.Fys.Medd.Dan.Vid.Selsk. 34, no. 3.

(2.64)
2
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or, more generaliv, ’ o J ’ (0)
V - (2.65)

(o) 
where £?(<î)(0) is any set of constant rotation coefficients satisfying the rela
tions (2.52).

For a system with matter it is clear that (2.60) or (2.61) cannot be valid, 
for this would entail (2.59) which would be in contradiction with Einstein’s 
field equations. However, for an insular system where space-time is asymp
totically flat at large spatial distances r, (2.61) must hold asymptotically, i.e.

y(abc)^Q for r->oo. (2.66)

Thus, in an asymptotically Lorentzian system of coordinates the tetrads 
must satisfy the boundary conditions.

(0) 
.4. — £? -» oo for r->oo. (2.67)

Further, as regards the manner in which this quantity tends to zero, we shall 
make the following natural assumption:

(o) 
/?. - <2 shows the same asymptotic behaviour as the metric quantities
9ik ~~ Vik •

This behaviour depends of course on the type of physical system we 
are dealing with. For a system with outgoing radiation, only, the boundary 
condition will have the character of Sommerfeld’s radiation condition. The 
form of the boundary conditions will of course also depend on the system 
of coordinates. Although it may be convenient to use asymptotically rec
tilinear coordinates, the boundary conditions can of course be formulated 
in any system of coordinates.

As regards the supplementary equations which, together with Einstein’s 
field equations and the boundary conditions, should determine the complex 
T^ uniquely, it was shown in reference 2 that the following six covariant 
equations would serve this purpose:

rikn + riki®1 = (2.68)

However, these equations are not the only possible ones and the arbitrariness 
in the choice of the supplementary equations is even somewhat larger than 
was assumed in reference 2. In an interesting paper by Pellegrini and 
Plebansky(11), this arbitrariness is diminished by the requirement that 
all the equations for the tetrad field should be derived from a variational 
principle. In this way, they arrive at a theory which, in the weak-field 
approximation and in the case of a spherically symmetric system, is prac- 
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ticallv identical with the theory in reference 2. Bnt in addition to that, their 
formulation opens up the possibility of an interesting generalization of the 
usual theory of gravitation, in particular as regards systems containing 
fermion fields. However, also this theory contains some arbitrariness and 
the equations determining the metric tensor are not exactly identical with 
Einstein’s field equations. For this reason, it may be for the time prefer
able to work with the formulation developed in reference 2.

When we have made a certain choice as regards the supplementary 
equations, for instance the equations (2.68), the energy-momentum complex 
for a given physical system is a definite function of the space-time coordi
nates, which means that we may calculate the energy distribution through
out space. However, if it is true that the energy content in a small part of 
space is unmeasurable, then we have obviously obtained too much. Now, 
it is an interesting fact that, if we only regard the total energy and momentum 
as measurable quantities, the question of the exact form of the supplementary 
conditions does not arise. In fact, as we shall see in section 6, the energy 
and momentum contained in a sufficiently large volume V are invariant 
under all tetrad rotations (2.51) which respect the boundary conditions A 
and B for the tetrads formulated on p. 18. On the other hand, the distribu
tion of the energy throughout space will in general be different after a tetrad 
rotation. This is quite satisfactory if the energy distribution is unmeasurable. 
The situation is then here somewhat similar to the case of the covariant 
Dirac equation where the measurable quantities, like the charge and current 
densities, are invariant under tetrad rotations, while the wave functions 
themselves are not invariant. From this point of view the tetrad field vari
ables have to be regarded as subsidiary quantities like the potentials in 
electrodynamics, and the tetrad rotations are a kind of gauge transforma
tions under which the measurable quantities, such as total energy and 
moment, are invariant. Supplementary equations of the type (2.68) are 
then not necessary, but sometimes it may be convenient to ‘fix the gauge’ by 
applying such covariant equations.*

3. The Gravitational Field at Large Spatial Distances from an Insular 
System with Axial Symmetry

In order to calculate the gravitational energy emitted from a physical 
system as w’ell as the total energy and momentum of the system by means

* In some cases it may even be advantageous, just as in electrodynamics, to fix the 
gauge in a non-covariant way; this is not in contradiction with the principle of relativity, 
since the gauge of the tetrads in this point of view is considered unobservable. In this 
connection, cf. also reference 14. 

2*
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of the theory outlined in the preceding section, we have to know the field 
at large spatial distances only. In reference 1, Bondi, van der Burg and 
Metzner have given the exact form of the metric at large spatial distances 
from any a xi-symmctric system with no ingoing radiation. These investiga
tions were extended to an arbitrary system in a subsequent paper by 
Sachs(12). In the present paper we shall, for simplicity, confine ourselves 
to the consideration of axi-symmetric systems and start by quoting some of 
the relevant results obtained by Bondi et al.

Although it is in principle allowed to use any system of coordinates in 
general relativity, there are certain classes of coordinate systems in which 
the boundary conditions have a particularly simple form.

In the system of coordinates S' with coordinates

(x'‘)-{r,0,ç>,q (3.1)

introduced by Bondi el al., 0 and cp are a kind of polar angles with the 
symmetry axis as polar axis, and r is a ‘radial’ coordinate chosen in such 
a way that the 2-surface du = dr = 0 has the area 4?rr2. Further, the time 
variable u is defined so that the curve du = dO = d(p = 0 represents an out
going light ray.

In S' the metric tensor g'ik has the form

where U, V, ß, y are functions of r, 6 and u. The corresponding determinant 
/Z' = det {g'ik} is given by

]/-g' = r2 sin 6e2^. (3-3)

'fhe contravariant components of the metric tensor are

r 1 ve 2ß/ -Ue~2? 0 -e-2y

ik
-Ue~2? r2e-2^ 0 11 1

"1 0 0 (r sin 0)~2 e2'7 " 1
\ _e-2/l

0 0
/

0

(3-4)

To ensure regularity in the neighbourhood of the polar axis the functions V, 
ß, U/sinO, y/sin20 have to be regular as sin 0 goes to zero. Although dif- 
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ferent coordinate patches in general may be necessary throughout space
time, it is believed that the space sufficiently far from the system is covered 
by one patch of coordinates of the type (3.1)—(3.4). In these coordinates 
the absence of inward flowing radiation may be expressed by the assump
tion that the functions £7, V, ß, y for sufficiently large distances r can be 
written as a power series in 1 /r with coefficients depending on 6 and u only. 
By introduction of the corresponding series expansion for g'ik into Einstein’s 
field equations for the empty space outside the matter one obtains

7 = c(u, 0)r X + O3

ß = 0)2^_2 + o3

U = — (c + 2 c cot 9) r 2

+ [2 AT (u, G) + 3 cc2 + 4 c2 cot 0] r~3 + O4

V= r-2 M(u, 0)

iV2 + xV cot 0 - c22 - 4 cc2 cot $ — — c2 (1 +8 cot2 0) r"1 + O2-

(3-5)

Here, On means a term which vanishes as r~n for r ->oo. c(u, 0), Af(u, 0), 
N(u, &) are functions of integrations which depend on the type of matter 
system we are dealing with and the suffix 2 means partial differentiation 
with respect to 0 for constant r, (p, u. In general we shall use the notation

(3-6)

The functions c, M, N are not independent, they are connected by the 
relations

with
- 3 xV0 = J/2 + 3 cc02 + 4 cc0 cot 0 + c0 c2

(3-7)

A = c22 + 3 c2 cot 0 - 2 c

= (c2 sin 0 + 2 c cos 0)2/sin 0

(c sin2 0)2
sin 0 /sin 0.

2

(3-8)
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Thus, if c(tz, 0) is given, the functions M and 2V may be obtained by integra
tion of (3.7) and the flow of information in the system is entirely controlled 
by the function c which, in reference 1, is called the news function. Further, 
since

f/44 =
2M(u, 0)

r + °2| (3.9)

on account of (3.2) and (3.5), the function M(zz, 0) is called the mass 
aspect. In the case of a static system, M is simply equal to the total mass m 
of the system, i.e.

M = in . (3.10)

In part I) of reference 1, Bondi proves the interesting theorem that the 
mean value m(zz) of M(u, over all directions is a never increasing func
tion of time. In fact, with

71

m (zz) = |Lw(zz, 0) sinødø (3.11)
— J

o

we get, by means of (3.7), (3.8),

Here we have used that

(3.12)

7T

Ç A sinØdØ =

o

(c sin2 0)2
sin 0

(3.13)

on account of the regularity condition for y/sin20 for sinØ -> 0 which, by the 
first equation (3.5), leads to the following limiting behaviour for the news 
function c:

c~ Å-(zz) sin2 0 for sin0->(). (3.14)

For a static system the quantity (3.11) is equal to the total mass or 
energy of the system and, since the right-hand side in (3.12) is always 
positive unless c0 = 0, we see that a system which is initially and finally 
static must lose energy if the news function c0 is different from zero in the 
intermediate stage.
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This important result of Bondi was limited to the case where the system 
initially and finally is in a static state. By means of the theory of the preceding 
section we are now able to prove this theorem for any (axi-symmetric) 
system and we shall also verify Bondi’s conjecture that the quantity m(zz) 
in (3.11) is equal to the total energy for all times, so that the formula (3.12) 
gives the energy radiated per unit time at any stage of the development of 
the system.

Let us first calculate the energy flux through a large sphere of ‘radius’ 
r using Einstein’s energy-momentum complex 0tk. According to (2.10) and 
(3.3), the energy current density should be

Further, if
dxK = (O, dO, 0), ôx*  = (O, 0, d<p}

(3.15)

(3.16)

are two infinitesimal 3-vectors lying on the sphere of radius r in the direc
tions of increasing 0 and r;, respectively, the quantity (2.42), representing 
the surface element spanned by these vectors, becomes

dS'x = dx ôx = (dOdç?, 0, 0). (3.17)

The energy flux in the outward direction through this surface element should 
then be

= -^dOdcp. (3.18)

By introducing the series expansion of the metric tensor (3.2)-(3.3) fol
lowing from (3.5) into the right-hand side of (3.15) we get, as shown in the
Appendix,

(3.19)

For sufficiently large values of r we can neglect the term Or and we get for 
the differential energy flux (3.18) by means of the first equation (3.7)

-^A°+ICOtö(-f2o + 2 c0 cot *9) sinOdO d(p. (3.20)

Thus, according to Einstein’s expression for the energy flux, the total 
energy which per unit time is leaving a sphere with a sufficiently large radius 
should be



24 Nr. 3
7t 71

jj jj S'E d6d(p = jj CO2 sin O dO +1 jj c0 -■ * sin OdO. (3.21 )

o o

Here, we have introduced the value x = 8.7 and used the equation (3.13) 
as well as the condition (3.14), which gives

The expression (3.21) is not in accordance with Bondi’s equation (3.12), 
in particular it does not have the essential property of being always positive 
since the integrant in the last term is linear in c0.

The inadequacy of Einstein’s expression €)*  in the system of coordinates 
used by Bondi et al. is even more apparent if we calculate the total energy 
in a large sphere of radius r. By means of (2.13), (2.11) and (3.17) we get 
for this quantity

provided that the system of coordinates can be continued into the interior 
of the matter system in such a wav that is everywhere continuous. In 
I he Appendix it is shown that /î^41 for large values of r is of the form

which shows that

(3-24)

(3.25)

It should be noted that the first term in (3.24), which causes the divergence, 
is completely independent of the functions c and M which characterize the 
system, i.e. the divergence is of the type mentioned earlier which was noticed 
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already by Bauer(6) for a completely empty world. If we, quite arbitrarily, 
subtract this infinity, the term O0 in (3.24), when introduced into (3.23), 
does not give the correct value of the total energy even for a static system. 
According to the considerations in the preceding section, this could also be 
expected.

4. Gravitational Energy Radiation from an Axi-Symmetric System

In this section we shall show that the complex T^ (in contrast to 0^) 
gives a value for the energy radiation which is in agreement with Bondi’s 
equation (3.12). In performing the calculations it is convenient to introduce 
a new system of coordinates S with coordinates

(a?) = (.r, y, z, t} (4.1)

connected with the coordinates (3.1) of the system S' by the transformation

x = r sin 0 cos cp, y = r sin 0 sin <p, z = rcos 0

.r4 = f = r + u.

The advantage of the system S is that it is asymptotically Lorentzian and that 
the components of the metric tensor have a series expansion in 1/r starling 
with the power zero. Since T/ and transform in a simple way, it is 
easy afterwards to find the components of these quantities in the system S'.

The transformation coefficients corresponding to (4.2) are

,/=detj^rr2sine-

sin 0 cos (p r cos 0 cos (p - r sin 0 sin (p

dx‘ 1 sin 0 sin (p r cos 0 sin (p r sin 0 cos <p

dx'
* !

cos 0 - r sin 0 0
\ 1 0 0

with
r = j/x2 + y2 + 22.

The con esponding Jacobian is

1

(4-3)

(4-4)

(4-5)
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Therefore, by (3.3),

(4.6)

For the calculations it is convenient to introduce the following four-compo
nent quantities:

(sin 0 cos (p, sin 0 sin 99, cosØ, O)

;ni = (cos 0 cos 99, cos 0 sin 99, - sin 0, O) 

I = (- sin 99, cos 92, 0, (>}

- (?/i4 4- nf) = sin 0 cos 92, - sin 0 sin 92, - cos 0,1)

(4.7)

and the corresponding quantities n\ ml, l\ with indices raised by means 
of the constant matrix i.e.

= 7?p m*  = I*  = lt, = rfk = (/q, - 1) .

Then, obviously,

nini = in^n*  = ltl*  = 1, = 0

= nJ1 = mili = m^u1 = = 0, = - 1 .

(4.8)

(4.9)

The derivatives of the quantities (4.7) with respect to u and r are zero, i.e.

Oi)o = (ni)i = (nh)o .. ......................  OOo = Oi)i = 0 (41°)

and the derivatives with respect to 0 and 99 are at once seen to be

("7)2 = (Ji)z = °> (/9)2 =

("7)3 = sinØ (z7?z)3 = cos0/p

(Qs = - (cos 0 777^ + sin 0 77^

(^)3 = -sinø 4.

(4.11)

Further, it follows from (4./) that

^i^k~^~h^k ! Hiflk 1 k~^ I'i^lkA

— 777^ 777^ + lk (^ II/. + 77^ /Z^) — .
G-1‘2)
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The transformation coefficients (4.3) may now lie written as a row 
matrix

-A*  = (-/A rm1, rainOT, ô{)

k = I 2 3 4.
(4-13)

The inverse coefficients are then the column matrix

since
dxi dxl . . . .

= " nk + mk + lllk + ô4 f*k

= m*  mk + l*l k + fi*  ftk + ?lk 4 + r/\ /ik =

(4.14)

(4.15)

on account of (4.12).
For the covariant components of the metric tensor in S we get, by (3.2)

and (4.14),

- (r 1 Ve2 - r2 U2 e2 ^) pik - e2 ? nk + ni ^) (4.16)

-rac2’7(/2ïi//fc + //i znfc).

Similarly, by (3.4) and (4.13),

(4.17)

At large distances r, the components of the metric tensor appear as a power 
series in 1/r with coefficients depending on u, 0, cp. In the following we shall 
only need explicit expressions for the terms up to the second power. By 
introduction of the expansions (3.5) into (4.16), and using (4.12), one easily 
finds
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with

and

(hk hik ' (hk + ~ik ‘ ^3

ya = aarl> hk = ßikr2

xik = a-ki = 2c (mi mk - k lk) + 2 M fik

+ (c2 + 2 c cot 0) (m*  mk),

ßik = ßki = 2 c2 (mf mk + \ lk) + - c2 (/z{ nk + nt uk) 

+- (A 2 + AT cot 0) /i{ pk - (2 A’ + cc2) (mz ,uk + ,ui mk).

(4.18)

(4.19)

(4.20)

If we define the quantities ylk, zik, <xlk, ßlk with indices raised by means 
of the constant matrix as in (4.8), then au and ßtk are obtained from 
(4.20) by substituting mr, lt, and iy by the quantities (4.8).

Now, it is easily seen that the contravariant components of the metric 
tensor have the following scries expansion:

(J*  = r/*  _ y^ - + yfr y/ + 0^ , (4.21)

for this expression satisfies the relation

9il 9kl ~ ^k (4-22)

up to the terms of second power in 1/r. The expression (4.21) can also be 
obtained by introduction of the expansions (3.5) into (4.17).

Let (iz, r, 0, <p) be any function of the variables (a/1) and let us denote 
the derivatives with respect to xl by

(4-23)

with a comma in front of the index /, in contrast to the derivatives (3.6) 
with respect to x 1 which are written without a comma.

Then, by means of (4.14),

dxm dy>
^’l= dxl dx'm

V’2 ml
Vo /'z + Vi ni +-------r

JPsJi
r sin 0

(4-24)
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If ip is equal to the function yik defined by (4.19), we have

(a»fc)o , + +
yzk,i =-----------Pi+-------------------------------- 2—r r

(4.25)

On the other hand, if ip is a quantity of the type 02, like zik or yiryrk, we 
have simply

~ik, I ~ \"ik)o Fl + ^3 (4-26)

From (4.6), (3.5) and (4.21) we get the following expansion for gzfc = ]/ ~ (J ylk 

(4.27)

and, by means of (4.25), (4.26) and (4.9)-(4.11), one finds, as seen in 
the Appendix (A.1-A.8),

2 M-A .
9“»-—y—/* ! + 03. (4.28)

r

This shows that our system of coordinates is harmonic only apart from 
terms of the type O2.

In order to calculate the total energy and momentum as well as the 
energy emitted by means of the complex TA we need an expression for the 
tetrad field h(a\ corresponding to the metric (4.18)-(4.21). As explained in 
section 2, the tetrad field is not uniquely determined by the equation (2.15), 
since any tetrad rotation (2.51) will leave the metric unchanged. However, 
as was mentioned already in section 2 and as will be shown in detail in 
section 6, the values of the total energy and momentum given by (2.41) 
and (2.44) with a sufficiently large surface F are the same for any tetrad 
field satisfying (2.15) and the boundary conditions A and B on p. 18. 
Therefore we can choose any tetrad field satisfying these conditions, for 
instance

^!(a) i ~ Vai + 9 Vai 4* ( ~ai ~~ q Ui j 4“ ^3 > (4.29)

which is symmetrical in a and i. This expression is in accordance with the 
equation (2.15), for we have
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^i ^(a) k Pik ’’’ 9 (Uik Uki) 2 ( ~^k 4 '^r 

~ 9 ( ~ki ~ Ukr y i j 4

— Pik ~ Pik 1 ~ik + ^3 — Pik

on account of (4.18). Further, since 7i(a)i in (4.29) is an algebraic function 
of the quantities yik and zik entering in the expression (4.18) for gik~gik, 
it is clear that this tetrad field satisfies the conditions A and B.

We shall now calculate the complex tzfc, defined by (2.31), up to terms 
of power 2 in 1 /r. To this end, we only need to calculate the quantities (2.26), 
(2.27), which occur quadratically in tk up to the first power in 1/r. Ac
cording to (4.18), the Christoffel symbols are simply

^i, kl = 2 1 +  + ^2 • (4.30)

Further, since

Vikl = ^(a) k;l = G’{a) k,l~ ^kl ^(a) r) I (431)

= -fr(a) *,Z  “-G, I
we get, by (4.29), (4.30) and (4.25),

Vikl = ^i 9 Uak, I ~~ 9 (.Uik, I + Uil, k ~ Ukl, i) + ^2

= 9 ^kl, i ~ Uil, k) + ^2

= ^7 [<*kl)o  Pi - (a«)o Pk\ + °2 •

Thus,

= V\i = [(.xki)o V*  - (M)o Pk\ + O2 = O2

(4-32)

(4.33)

on account of the relations

«ï = 0, g* = 0 (4.34)

following from (4.20) and (4.9).
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From (4.32)-(4.34) and (4.9) one easily linds that the Lagrangian 
(2.29) is zero up to terms of the second power in 1/r. In fact, we have

S-Å[(ftM)oft~(««)oftt] [(«“)»/'!-0H)o^] + 03" 03. (4.35)
4L r

Finally, since
^mi = A(O) 1 h(a) m, I = | Uam, I + °2

= 2 j. (arø)o P'i ^2

we get for the complex in (2.31)

f * _ 1
_ x 1

A'mi + Oz

- As [<““)o - Of)o (Oo ft + °3 •
4 xr

Hence, outside the matter where = 0,

Here, we have again used (4.34) and the relation

(4.36)

(4.37)

(4.38)

following from (4.20) and (4.9). 
For sufficiently large values of r 

3-vector density

o — I4

can neglect the term 03, the

(4.39)

which represents the energy current, lies in the direction of increasing r. 
Now, let and öx^ denote two infinitesimal 3-vectors which are tangents 
to the sphere of radius r in the directions of increasing 0 and tp, respectively. 
Then,
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d.rz = {r cos 0 cos tpdO, r cos 0 sin tpdO, - r sinOdO] = rmA dO 

åx/l = {-r sin 0 sin tpdtp, r sin 6 cos tpdtp, 0 ) = r sin 0 Z'" dtp

and the quantity dSx = dx^ representing the surface element spanned 
by these vectors, is

dSx = ny i-2 sin 0 dO dtp. (4.40)

Therefore, the energy flux through this surface element is, for sufficiently 
large values of r,

2 Cn2SdO dtp = Sx dSy =------ sinOdOdtp. (4.41)x

The total energy which per unit time leaves the sphere of radius r is obtained 
by integrating over all directions, i.e.,

n
Ç SdO dtp = ( c02 sin OdO. (4.42)

o

This expression is in accordance with Bondi’s equation (3.12), but the 
calculation has here been performed in the system S instead of in S', and 
we have to show that the same result holds in the system of coordinates 
used by Bondi et al. By means of the transformation law (2.34) for the 
energy-momentum complex it is now easy to calculate the quantity in 
the system S'. Since the coordinate transformation (4.2) is of the type (2.36), 
t4* transforms as a vector density.

Hence, by (4.5) and (4.37),

d v k 2 c 2
t? = r2 sin 0 -- --- t4Wi =---- --  a k sin 0 + 0. (4.43)
4 dxm 4 x 1 v 7

with

0.0,0}. (4.44)

Here we have used (4.14) and (4.9). Thus, we get for the 3-vector density 

2 c02 sin 0
x

(4.45)

and, for sufficiently large values of r, the energy flux through the surface 
element defined by (3.17) becomes
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S'dOdçp = &xdS'K =--sinOdOdcp. (4.46)

As one should expect, a comparison with (4.41) shows that the energy 
flux is the same in the system S' as in S, since the transformation (4.2) does 
neither change the system of reference nor the time scale.

On the other hand, Einstein’s expression (2.10) does not have this im
portant property. In the system S we get, by means of (4.30) and (4.25), 
for the Lagrangian defined by (2.8)

= ~~ TT2 + ^xm)o M ~ (am)o M ] . .
4r (4.4/)

x [(«*  )0 Ml + (aDo “ (a*z)o  M™} + °3 = °3

on account of (4.34) and (4.9). Further, since

pS = (]/~ ff), Wl =

and
__  faZwi)

</-g-y"",t + o2 - 
r

we get from (2.10)

= - 4^2 t(a?)o Mm + (4)o Ml - (“lm)o Mk] ^lm)o Mi + O3

= 4x7 ^lm^° ^lm^° + °3

or, by (4.38),

+ (4.48)

A comparison of (4.48) with (4.37) shows that Einstein’s expression for 
the energy-momentum complex gives the correct value (4.41) for the energy 
flux when calculated in the system S. However, since transforms in an 
unphysical way under the transformation (4.2), it leads to the wrong result 
(3.20) for the radiated energy in the system S' adopted by Bondi et al.

The calculations of the present section have corroborated the conjee-
Mat.Fys.Medd.Dan.Vid.Selsk. 34, no. 3. 3 
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ture of Bondi regarding the total energy flux from an axi-symnietric system 
expressed by the equation (3.12). In addition to that, our equation (4.41) 
gives the angular distribution of the energy flux which must be regarded 
as a measurable quantity, provided we can construct a receiver of gravita
tional energy which can be placed at large distances from the emitter in 
different directions. According to (4.41), the energy flux per unit solid angle 
is given by the square of the news function c0(t - r, 0) and, by (3.14), we 
see that the energy flux must be zero in the direction of the symmetry axis.

For a detailed account of the angular distribution of the radiation from 
a given physical system we have to know the angular dependence of c0. 
This requires a continuation of the solutions (3.2), (3.5) of the field equa
tions at large distances into the interior of the system. So far this has been 
achieved exactly for a static system only. However, for a quasi-stalic system 
and sufficiently weak radiation, Bondi*1) found the following approximate 
expression for the news function c(u, 0):

c = ^Qoosin2°J (4.49)

where ()(u) is the quadrupole moment of the system. According to this 
expression we should expect a steep maximum for the energy radiation in 
directions perpendicular to the axis of symmetry.

5. The Total Energy and Momentum

We begin this section by performing a calculation of the total energy 
which, as we shall see, leads to a verification of Bondi’s conjecture 
that the quantity m(u) in (3.11) represents the total mass or energy of the 
system. Also here it is most convenient to work in the system S instead of 
in S', but first we must show that the total energy is the same in both systems. 
According to (2.41), the energy contained in a large sphere of radius r at 
the time t is in the system S

f/(u,r)=-U,U442dS2. (5.1)
•’ J

Similarly in S'
H'(u.r)--duy-js;.. (5.2)

In this integral (5.1), r and t are constant, while in (5.2) r and u have to 
be kept constant.
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u;4Â(7si = u;41 <w<?. (5.3)

dxr dx'4 dx
(5-4)

s •

(5.5)

which shows that the integrals in (5.1) and (5.2) are equal:

(5.6)H' (u, r) = H(u, r).

The integrant in (5.1) can, by (4.40) and (4.7), be written

(5-7)

(5-8)

The calculation of y‘
Appendix (A.9-A.15)

Further, since ll^z is a tensor density, we get, by means of (4.5), (4.13) and 
(4.14),

- ll44 '■ dS^ = U441 f.it r2 sin 0 dO dtp,

ll?1 = J

Since iz = t-r, the 2-surfaces over which the integrations in (5.1) and 
(5.2) are to be performed are identical. On account of (3.17), the integrant 
in the last integral is

and &l for the tetrad field (4.29) is carried out in the 
and gives the result

Now, U? is antisymmetric
Therefore, by (5.3), (5.4)

By introduction of this expression with z = Å’ = 4 into (5.7) and (5.1) we 
get

which shows that we have to calculate U44Z/q up to terms of the second 
power in 1/r. More generally we have, by (2.30) and (4.6),

in s and t and, according to (4.7), /q = ô4-n 
and (4.40),

1] M .. . _____
dl n ‘2 xr

3*
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H(n, r) = { U441 r~ sin 8 d8 dtp

= Ç Ç (4 .1/- A) sin 0 d8dtp + Ox 
2 x

or, by means of (3.13) and (3.11) and putting x = 8%,

H (u, r) = m (it) + 04. (5.11)

For sufficiently large values of r we can neglect the last term in (5.11) and 
the remaining term, which is a function of u only, we shall define as the 
total energy H of a non-closed system. Thus, the total energy

H = in (u) = ( 4/ (u, 8) sin 8 d8

o
(5.12)

is just given by Bondi’s expression (3.11).
We shall now perform a similar calculation of the total momentum of 

the system. As explained in section 2, this quantity is given by the simple 
expression (2.44) if, and only if, the system of coordinates is asymptotically 
rectilinear. This is obviously the case with S but not with S'. Thus, in S 
we get for the linear momentum contained in a large sphere of radius r, 
by (2.44), (4.40) and (5.9),

Thus,

with

If (u, r) = ( Ut4 2 dSx = - ^ Ut41 fit r2 sin OdOdtp

— (((4M-A) ntsin0d0</<p

c cot 9) sin 8 d8dtp + Or.

Pt(u> r) = p((«) + °i

If = — (4 M - A) nt sin 8 d8 dip

+ 2 c cot 8) niL sin 8 d8dtp.

(5.13)

(5.14)

(5.15)
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Again we can neglect the last term in (5.14) for sufficiently large 
values of r and define the ‘total momentum Pf of a non-closed system by 
the remaining term (5.15) which is a function of u only. Since M, A and c 
are independent of y for an axi-symmetric system, while nlt n2, m1, m2 
are proportional to cos y or sin 92, the integration over y in (5.15) gives 
at once the value zero for the components of the total momentum in a 
direction perpendicular to the symmetry axis, as one should expect:

Pj-P.-O. (5.16)

For the component along the symmetry axis we get, by (5.15), (3.8) and 
(4-7),

71

P3 = Ç M cos 0 sin 0 dO

n 0

o
c2 sin 0 + 2 c cos 0)2 cos 0 - (c2 sin 0 + 2 c cos 0) sin 0] dO. (5.17)

The last integral is easily seen to be zero, for it is obviously equal to

on account of (3.14). Hence,

71

P3 = (4/(n, 0) cos 6 sin 0 dO.

o
(5.18)

The equations (5.12), (5.16) and (5.18) show that the components of the 
‘total four-momentum’

(5.19)
are

7t

4/cos0 sin© dO
o

71

( M sin 9 dO

0

(5.20)

For the time derivatives of these quantities we get, bv means of (3.7) and 
(3.13),
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dPi dP2
dt dt

where G is the energy current density (4.39) and

= sin O dOdcp.

(5.21)

(5.22)

(5.22) shows that the energy is conserved. 
Further,

7T

f = \ cos s*n = \ \ co2 cos d® = —Ç Ç S3 r2 df2, (5.23)

o

where G3 is the component of the vector density (4.39) in the direction of 
the symmetry axis. Here we have used that the integral

o

(1 + cos2 0)]2 dO 

= [c20 sin d cos 0 + c0 ( 1 + cos2 0)] |q = 0

on account of (3.14). The equations (5.21), (5.23) show that the gravitational 
energy radiated administers a recoil to the system of the same amount as in 
the case of electromagnetic radiation.

The relations (5.21)-(5.23) could also be obtained directly from (2.3). 
If we integrate this equation over the interior of a large sphere of radius r, 
we get

X $ $ $ T‘4 dxl ’dxS ■ ■ j Ü JT<" “dxl dx2 dx3 - $T*ds“ ■ (5.24)
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In virtue of (4.37) and (4.40) this gives, for sufficiently large values of r,

0, 0, - ( c02 cos0 sin 0 dO, - c02 sinØ dO

o o

in accordance with (5.20)-(5.23).
In this section we have defined the ‘total momentum and energy’ as the 

quantities obtained from (5.11) and (5.14) by neglecting terms of the type 
Oj. This amounts to neglecting all terms of the type O3 in ,/'z in the sur
face integrals (5.10) and (5.13). Therefore, 74 will be equal to the momentum 
and energy contained in a sphere of radius r only if the terms O3 occurring 
in the series expansion of are really negligible. For this to be true 
it is necessary that r is so large that the different terms of ascending powers 
in our series expansion of the metric correspond to decreasing orders of 
magnitude, i. e. we must have

1 » I yik I » I -a I »........... • (5.26)

Further, we must require that r is so large that the last terms in (4.25),
(4.26) arc small compared with the first terms, i.e.

I (Va)o I » I dik I • r_1 (5.27)

and a similar relation for zik.
In view of the expressions (4.18)-(4.20) for yik and zik the condition

(5.26) demands
— «1, ^h«l, !Al«|Af|,- • • •. (5.28)

r r r

Further, if X is the order of magnitude of the wavelengths of the radiation 
emitted, we have

c M N 
co~p Ao~J................. (5-29)

and (5.27) then means
/• » x. (5.30)

Thus, the radius r has to be large compared with the wavelengths of the 
radiated waves, i.e. only if the surface of the sphere is lying in the ‘wave 
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zone’ of the radiation will the momentum and energy contained in the 
sphere be equal to the ‘total momentum and energy’ Pt of the system. In 
all practical cases, c0 and 3f0 are very small quantities and it is easily seen 
that the conditions (5.28)-(5.30) are compatible with the relations (3.7), 
(3.8).

6. Invariance of Pz and of the Asymptotic Form of T*  under 
Tetrad Rotations

In section 2 it was shown that the complex transforms according to 
Eq. (2.58) under tetrad rotations (2.51) and it is unchanged only if the 
rotation coefficients are constants. However, as also mentioned in section 2 
and as we shall show now, the total four-momentum Pt as well as the 
asymptotic form of are invariant under any rotation (2.51) for which also 
the new tetrads 2q(a) satisfy the boundary conditions A and B on p. 18. In 
our proof of this statement we shall again work in the system of coordinates 
S, where the boundary conditions have a particularly simple form, but 
since it is a statement regarding covariant quantities the proof is of course 
valid in any system of coordinates.

From (2.51) and (2.16) it follows that

(6.1)

Therefore, since the tetrads (4.29) have the limit

}Âb)^Ôb for (6.2)

the boundary condition A for yields

(o) (o)
= ß*\ n, (6.3)

(0)
where the coefficients ^(a\ô) are constants.

However, TA is unchanged under constant tetrad rotations so that we 
(0)

may choose &(a) {b) = without any loss in generality. This means that 
(0) 
ß(a)(6)(.r) must be of the form

where
(,T)-d;+ «%(.!■), 

coab (x) -> 0 for r -> oo.

(6.4)

(6.5)
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The indices a and b in co% are, of course, raised and lowered according to 
the same rule as in &(a\b) ■

We shall now apply the boundary condition B to the new tetrad vector
, which requires that h-a) - must have the same asymptotic behaviour 

as the metric quantities ip = gi^-^ik- In the system S the boundary condi
tion for ip has the form of a Sommerfeld radiation condition, i. e. y (u, r, 0, 9?) 
as a function of 11 = t - r, r, 0, and cp satisfies the condition

C. =

for r -> 00 under constant u, 0, tp.
Moreover, ip and its first-order derivatives go to zero at least as — for r^oo.

Now, condition B requires that C must hold also for ip = - ôf which,
on account of (6.1) and (6.4), implies that also the function ip = oab satisfies 
the condition C.

This means that wab (u, r, 0, <p) and its derivatives have the following 
asymptotic behaviour for r ««ft - (^ab)o’ (œ«&)2 and (wa&)3 §° t0 zero 
at least as 1/r, and (wab)1 goes to zero at least as 1/r2.

Symbolically this is expressed by

(wa{)> (æ«ô)o’ ~ @1 zg g^
(æa&)l = ^2»

, . , , 1where On means a term which goes to zero at least as —.

Otherwise the scalar functions coab can be chosen completely arbitrarily 
apart, of course, from the orthogonality relations (2.52) which imply the 
following conditions:

From the first of these equations and (6.6) we get for the symmetrical 
bination

M{ab} ~ Mab + 0)ba

X^ab}’ (M[ab^0’ (œ'abp2’ =

(M(abf>l = ^3-

(6.7) 

com-

(6-8)

(6.9)
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Further, from (4.24) with -^ = co

Mab, I ~ (Mab\ fl + (a>a6)lI'l+-(cual,)2 ml + r sin Q 'l • (6.10)

where the bracket term is of the type ()'2 on account of (6.6). Hence,

and, since

"(ab), l = <"(ab) )o fl + Og = - « COcb)0 + 0;

d2u 
dxl dxi

(6.11)

(6.12)

M(ab),l,i (" aCOcb)oO fl fi+Os- (6.13)

We shall now calculate the asymptotic form of the complex T^’ corre
sponding to the tetrads By the asymptotic form we mean the expression 
for 7)*  obtained by neglecting all terms of type 03, i.e. the expression which 
determines the energy radiated from the system.

According to (2.58) we have

V-v-i-y, (6.14)

and we shall see that this quantity is really zero for large r if we neglect all 
terms 03. To this power in 1 /r we get, by (2.54), (4.29), (4.21) and (6.4)-(6.10),

= h{a>> k h(b) 1 (a)

Further, since h = 1 +O2, we gel from (2.56)

Here we have put

which gives

(6.15)

(6.16)

(6.17)

(6.18)



Nr. 3 43

Now, we get from (6.17), (6.15) and (6.6)-(6.12)

(6.19)

(6.20)

following from the second equation (4.34).
By means of (6.9) and (6.13) the equations (6.19) and (6.16) give

and
(6.21)

(6.22)

Thus, the asymptotic form of TA, obtained by neglecting all terms of the 
type O3, is unchanged under all tetrad rotations which respect the bound
ary conditions A, 13, and it is therefore uniquely given by the equation 
(4.37). In particular this holds for the gravitational energy emitted, which 
is uniquely given by the expressions (4.39)-(4.42).

We shall now show that also the total four-momentum Pt is invariant 
under these rotations. According to our definition of Pt and in view of 
(5.10), (5.13) and (2.55), the change in Pt under a tetrad rotation is given by

P - Pt = - (1V1 - llj41) r~ sin f) df) dtp

= -i sin Q dOd<p,
(6.23)

where the integration is extended over the surface of a large sphere of 
radius r and all terms of the type Ox have to be discarded. The calculation of 

which runs along similar lines as the calculation of Y* lti in (6.15) 
—(6.22), is performed in the Appendix (A. 16—A.22). The resultis, neglecting 
terms of the type O3,
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From the definitions (4.7) of nz, and it follows that

mxnÂ-7nÂnx = -ôyÀvr

= ôxXvmV-
(6.25)

Therefore, we get from (6.23)-(6.25) with z = 4

71 2 71

P4- P4 = H - H = ( dß (dy [(cox^)2 lv sin ß - (ft>z7)3 7np]. (6.26)
— •’ J

0 0

By partial integrations of the first and second member with respect to ß 
and y, respectively, we get, since the contributions from the boundaries 
cancel,

71 2 71

l\-P4 = ^^^dß^dyM^[-lV COSß + (mV)3\ = 0 (6-27)

0 0

on account of (4.11). Similarly we get from (6.23)-(6.25) with i = 1

Pt-Pt-O- (6-28)

Thus, also the total four-momentum Pt is invariant under all tetrad rotations 
which respect the boundary conditions A and B, and Pt is therefore uniquely 
given by the equation (5.20).

7. Transformation of Pz under Asymptotic Lorentz Transformations

We have seen that the total energy is invariant under the transformations
(4.2) and (2.5) which leave the system of reference and the time scale 
unchanged. For more general coordinate transformations this will of course 
not be the case. We shall in particular investigate the transformation pro
perties of P^ under transformations which, at large spatial distances from the 
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system, have the form of a Lorentz transformation. For simplicity, we shall 
only consider such transformations of this type which lead from the system 
S with coordinates (4.1) to a system 8 with coordinates

(xl) = (x,y,z, 1} 1
    - (7-1)

= {r sin 0 cos (p, f sin Ü sin 92, r cos 0, ü + f)

for which the metric tensor gik asymptotically is of the same form as in 
(4.18)-(4.21). In part C and in the Appendix 3 of reference 2, A. W. K. 
Metzner has given the most general asymptotic form of a transformation 
of this kind. A special class of these transformations (a pure A-transforma- 
tion) is given by

(7.2)

Here,
K = K (0) = cosh v + sinh v • cos 0 > 0, (7-3)

where v is an arbitrary constant and

- sinh v sin 0. (7-4)

From the second equation (7.2) it follows that

1 -
ü (K cosh v - 1)

f/<2
(7.5)

sinh v + cosh v cos 0
cos 6 = (7-6)

It is easily verified that the transformations (7.2), when written in terms of 
the variables (4.2), (7.1), asymptotically are of the form
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x = jc + 04, y = y + Oy

z = z cosh v + I sinh v +

/ = Î cosh v + z sinh v + 0l

which is a special Lorentz transformation with a relative velocity

v = tan v (T.S)

in the direction of the symmetry axis. Thus, far away from the matter 
system, the reference points of the system S are moving with the constant 
velocity v in the direction of the r-axis with respect to the system S.

The news function c(ü, 0) and the mass aspect M(ü,Ö) in the system 
S are connected with the corresponding quantities in the system S by the 
following relations:

c= Ke, c0 = 7<2c0, c00 = 7<3c00,

47 = 7<3 [Tl + f(ü, 0)],
where

(7-9)

f(ü, Ô) (7.9a)

is a function of ii and 0 which depends linearly on the derivatives c0, c00, 
c02 of the news function c(ü, 0) with respect to ü and 0. Therefore, for a 
system which does not radiate, i.e. for c0 = 0, the function f(ü, 0) vanishes. 
(Note that, if c0 = 0, then also c0 = 0 on account of (7.9)). Further, since 
we also in S have relations of the type (3.7), (3.8) we see that in this case 
also 4f0 = 0, i.e. M = 4/(0) is a function of 0 only.

For the total momentum and energy in the system 5 we get, on the analogy
of (5.20),

A (ß) =

Thus,

71 7T

0, 0, Ç 4/ (ü, 0) cos 0 sin Ö dÔ, - - ( M (ü, Ö) sin Ö d6

o o
(7.10)

(7.11)

i.e. the components in a spatial direction perpendicular to the relative 
motion are transformed as if P{ were a vector. However, the transforma
tion of the components P3 and 7J4 is in general much more complicated. 
For instance, take the expression (5.20) for 7J4,
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47

7?4 (u) = M (u, 0) sinØ dO,
o

(7.12)

and introduce the variable 0 defined by the asymptotic form of (7.5), (7.6) 
as new variable of integration. Then we have

sin 0 dO
sin 0 dO = ——-—

Ä2
(7.13)

and, on account of (7.9) and (7.2),

71

= -|lj[M(Ku, 0) + /’(7w, 0)] 7i(0)sin0d0, (7.14)

o

where il during the integration has to be kept constant in the argument 
ü = K • u in the functions M (ü, 0), f(ii, 0).

Similarly, using also (7.6),

P3 (u) = - Ç 37 (n, 0) cos 0 sin Odd

('•M
= - ( [37 (7\iz, 0) + /(Azz, 0)] [sinh v + cosh v cos 0j sin 0 dÖ.

0

Since the variable ü = K(Ö)u in 37(u, 0) is varying over the range of inte
gration in (7.14), (7.15), it is seen that there is in general no simple con
nection between (P3, P4) and (P3, P4).

However, if the system for a certain period does not radiate, i.e. for 
c0 = c0 = 0, then both 7< and Pt are constant in time. Further, we have then 
f(ü, 0) = 0 and Mo = 0, i.e. M = 37(0) is independent of ü, and in this 
case we get from (7.14), (7.15) and (7.10)

ji

P3 = ~ Ç M (0) [sinh v + cosh v cos 0] sin Odd = P3 cosh v - P4 sinh v

o n
P4 = - - Ç 37 (0) [cosh v + sinh v cos 0] sin Odd = P4 cosh v - P3 sinh v. 

(7.16)

o
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Thus, for a non-radiative system, the quantities Pt transform as the co
variant components of a free 4-vector under the asymptotic Lorentz trans
formations considered, i.c. under the A-transformations (7.2), (7.3).

This result is easily seen to hold for arbitrary asymptotic Lorentz trans
formations. To prove this statement we only need to show that c0 = 0 implies

Tffc = O4 for r->oo, (7.17)

for, according to a well-known argument (see f. inst. reference 8), the 4- 
vector character of is an immediate consequence of (2.3) and (7.17). 
Now, with c0 = 0, (3.7) and (4.19) give

(^)o-O (7.18)
and (4.24), (4.29)

^(a) k,l = 2 + ^2 = O2. (7.19)

Further, by (4.32), (4.33), (4.36),

(Az> Viki> ®k> Ah) = A (7.20)

and, since £ and t/’ are homogeneous quadratic expressions in these 
quantities,

£ = O4 
v=e = o4,

i.e. (7.17).
From (7.11) and (7.16) it follows that

(7.22) 

is an invariant, and we may assume that this quantity is negative so that 
we can define a real total rest mass mQ of the system by (7.22). Then it is 
always possible by a suitable /^-transformation to make Pt = 0, and in this 
‘rest system’ we have

H=m0. (7.23)

For a radiative system we have seen that the total momentum and 
energy Pt does not transform in a simple way under the transformations
(7.2),  (7.7) and the same holds generally also for the gravitational energy 
and momentum radiated in a given time interval. However, if the radia
tion is going on a certain finite time only, so that c0(zz, 0) is different from 
zero in a time interval zz4 < zz < zz2 but zero outside this interval, it is easily 

(7.21)
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seen that the total gravitational four-momentum pt emitted during the 
radiation period must again be a 4-vector under asymptotic Lorentz trans
formations. This follows at once from the law of conservation of energy 
and momentum which yields

(7.24) 

where P^ and Pd2) are the total four-momentum of the system before and 
after the radiation period, respectively. Since PP} and Pz(2) are then 4- 
vectors the same holds of course for

An explicit expression for the gravitational four-momentum pt is obtained 
by integrating (5.25) over the radiation period, i.e.

«2 7Ï

- - Ç (hi \ c0 (u, 0)2 sin 0 d6

Ui 0

(7.25)

with an analogous expression for pi in the system S.
The 4-vector character of pf is easily demonstrated directly by intro

ducing the new variables of integration ü, X6 obtained from (7.2), (7.4) by 
neglecting terms of the type O1, i.e.

(7-26)

The corresponding Jacobian is, on account of (7.26) and (7.13),

du du 1 üK'
dû d6 k k2 1
d6 d6 1 = F2’
------------ — 0
dû d6 K

(7-27)

Thus, using (7.9) and (7.25),

sin 0 du dO = Kc02 sin 0 du (16

Similarly,
= p4 cosh v - p3 sinh v.

P3 = P3 cosh r -P4 sinh v
Pi=Pi = 0, p2=p = 0.

Mat.Fys.Medd.Dan.Vid.Selsk. 34, no. 3.

(7-28)

4



50 Nr. 3

The emitted gravitational energy

h = - p4 = - ( c0 (zz, 0)2 sin 0 du dO

is always positive, and from (7.25) we see that 

Hence,
2 2

Th > TV- (7.31)

Pi Pk=P3~ Pi = -P2 (7.32)

with a real valne for the ‘rest mass’ /z of the gravitational radiation. As 
far as energy and momentum are concerned, the loss in these quantities during 
the radiation period is exactly as if the system had emitted a particle of rest 
mass /z with the velocity

in the direction of the symmetry axis.
Although Pi in general is not exactly a 4-vector, this will he true with 

very good approximation in all practical cases. From the approximate ex
pression (4.49) for c one can see that c0 for all systems in nature is an ex
tremely small quantity, so that we have

(7.34) 

for a large interval of zz. According to (5.25) and (7.9a) this means that 
Pt is only a slowly varying function of time and that the function fin (7.14), 
(7.15) can be neglected. Further we get by a Taylor expansion in zz - zz = 
zz(Æ-l), and by means of the first equation (3.7) and (3.8) written in the 
system S,

M (Ü, Ô) = M (zz, ö) + Mo (zz, Ö) (zz - zz) I
— _ / ( 7.3 5 )

-M(u,9) + O(ûê0) J

so that we can neglect the last term on account of (7.34). Then, the equations 
(7.14) and (7.15) are reduced to (7.16) with zz = zz in /(• (z“z) on the right
hand side of (7.16). This means that PiÇiï) transforms approximately as a 
4-vector under asymptotic Lorentz transformations.
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8. Approximate Plane Waves Emitted by a Distant Matter System

In this section we consider the gravitational radiation in a spatial 
region V of linear dimensions / at a large distance R from the matter system 
so that

(8.1)

and that V lies entirely in the wave zone defined by the relations (5.26)- 
(5.30). Then, it is easily seen that the solution (4.18)-(4.20) of Einstein’s 
field equations inside V has the form of a weak field expansion

(1) (2)
9ik = rlik + lJik+ lJik+ ’ ’ ' ’ > (8.2)

where the first approximation yik represents a plane wave. Let us in partic
ular consider the case where the region V is lying around the point x = R, 
y = z = 0 on the positive x-axis. Then it is convenient to introduce new 
coordinates

so that inside V

(8-5)r = |/(7? + x)2 + y2 + z2 = R + x + Olf

where On throughout this section means a term which is small of the n’th 
order. Further, if we put

ü = I — x, (8-6)
we have

u=t — r = ü- R + O1

cos G=- = ^ + O2 = O1, sin 0 = 1 + O2

(8-7)

cos (p = 1 + O2.

Therefore, the quantities defined by (4.7) are of the form
4*
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with
'"o Äh) = {";> /'J +

"i -
t

- \ i, 0, 0, 0}

iïy f
- \ o, 0, -1 :• 0}

k- t 0, 1, 0, 0}

ÿi / 
V-1 , 0, 0, 1)-= ôi - ni

(8.8)

(8.9)

The quantities (8.9) are constants which obviously satisfy the same rela
tions (4.9), (4.12) as the quantities (4.7).

On account of (8.7) the functions c(u, 0), Af(u, 0), c2(u, 0) occurring 
in the expression (4.20) for aa have the following form inside V:

{c (u, 0), M (u, 0), c2 (u, 0)} =
(8.10)

The quantities inside the curly brackets on the right-hand side of (8.10) 
are functions of ü, which we denote by J?c(ö), jRM(ü), 7îc2(ü), respectively. 
Then, inside V the quantity yik in (4.18) takes the form

(D 
yik = Uik + O2, (8.11)

where
Vat = 2 c (ü) (znz7âÆ. -/J^) + 2 M (u) ÿtÿk + c2 (ü) (nyÿk + pimk') (8.12)

is a function of ü = t-x only and therefore represents a plane wave travel
ling in the direction of the positive ir-axis. On the other hand, the term O2 
in (8.11) depends on x, ÿ, z besides on ü and, since this term is of the same 

(2) 
order as zik in (4.18), we see that already the term of the second order yik 
in (8.2) is not a pure plane wave.

Inside V the tetrad field (4.29) is of the form

, i (i)
\a) i ~ Vai 4" Vai 4 0% . (8.13)

Further, in the same region we get from (4.37) and (4.48)

, 2 c' (ü)2 
Tf = ti = /y 4 O g

X
(8.14)
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(8.15)

where the prime means derivation with respect to ü, i.e.

(8.16)

Thus, in the system of coordinates (.r^), Einstein’s expression 0k and the 
complex give identical results if we neglect all terms of order 03. The 
first order metric tensor

(i)
9ik ~ r!ik r 9ik (8.17)

is a solution of the linearized field equations and it has the form

-2M 0 -c2 -1+2 3/

1 _i_ o If O T- _ 9 If

To the same order of magnitude we have

which satisfies the de Donder condition

(8.18)

(8.19)

(8.20)

in accordance with the equation (4.28). This latter equation also shows that 
the de Donder condition is not satisfied in higher approximation. Introduc
tion of the approximate metric tensor (8.17) into the expression (2.10) for 

gives of course just the formula (8.15). This is the usual procedure by 
which the energy llux in a weak plane gravitational wave has been calcu
lated on the basis of Einstein’s theory(13) and, on account of the accordance 
between 0k and T/ expressed in (8.14) and (8.15), this procedure seems 
to be justified.

However, it should be noted that lhe accordance between 0k and T^ 
holds in special coordinates only, and if we base our calculations on the 
complex 0k it is in general not easy to decide in which systems of coordi
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nates this expression is valid. To illustrate this point let us again for a 
moment consider the case of a completely empty space, where we can use 
Lorentzian coordinates (Xv) with the metric tensor gik. In these coordinates the 
quantity#/ in (2.10) is zero. By an infinitesimal coordinate transformation

X*  = xi+£i(x'), (8.21)

where the F(.ij are arbitrary functions of (a?) which are small of the first 
order, we obtain for the metric tensor gik in the new system of coordinates 
an expression of the type (8.2) with the first order term

Uik = k + %k,i (8.22)

= (8-23)

Then, a simple calculation shows that the quantity #/ in (2.10) correspond
ing to the metric tensor gik in general is different from zero, i.e.

#/^0. (8.24)

As shown in the Appendix (A. 23)-(A. 36), this arbitrariness in the value of 
Einstein’s energy-momentum complex cannot be removed simply by re
quiring that we should use only harmonic systems of coordinates where 
the de Donder condition is satisfied. It is true that #/ is equal to zero in 
all such systems (.rl) for which the quantities in (8.21) are functions of 
a^-.r1 only, and this might indicate that Einstein’s expression can be applied 
safely to those solutions of the field equations in empty space which are 
first order plane waves. On the other hand, the fact that a simple trans
formation of coordinates in a flat space may create a #/ of the same order 
of magnitude as a ‘real’ gravitational field makes one feel uneasy in applying 
Einstein’s expression in general.

The just mentioned difficulty does not arise with the complex T/, for 
in a completely empty space we have in all systems of coordinates exactly

V -1,*  - 0 (8.25)

on account of the condition (2.60) imposed in this case. For a weak gravita
tional field of the type (8.18) we have then also to require that deviates 
from the values (2.64) or (2.65), valid in a completely empty space, by a 
quantity which is small of the first order. This requirement is of course 
satisfied by the expression (8.13) which is symmetrical in a and i. If we 
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introduce this tetrad field into the expression (2.31) for we get of course 
just the formula (8.14). Now, the proof in section 6 for the invariance of 

under tetrad rotations of the type (6.4)-(6.7) leads to the result that 
inside V is unchanged under all rotations of the tetrads (8.13) 

with coefficients &(ab) of the form

(ab) ~ bab + <>Jab (^)> (8.26)

where the quantity wab (u) is any function of ü = t-x which is small of 
the first order and antisymmetric in the indices a and b. The invariance 
of the second order expression for ttk under such rotations is shown ex
plicitly in the Appendix (A. 37)-(A. 45). A finite rotation with constant co- 

(0)
efficients ^(ab) will of course also leave unchanged. 

An infinitesimal coordinate transformation of the type

= x*  + £*(Zc)  (8.27)

changes the complex given by (8.14) into
(i)

T7-V-r,(,„U/». (8.28)

Here, in using (2.34), we have neglected all terms of order O3 and

is the first order expression of the superpotential (2.30) corresponding to 
the tetrads (8.13). If = F(ü) is a function of ü = t-x only, we have

(8.30)
and, since

(1)
77nlVw = O, (8.31)

we have in this case
T/ k _ T k

1 i 11 ‘ (8.32)

Thus, to the second order the energy-momentum complex is unchanged 
under infinitesimal coordinate transformations where £*  is a function of ü 
only. By a transformation of this type the metric (8.18) can be brought 
into one of its two standard forms (13). If we choose of the form

= Z(û)/q + ^(ü)mf, (8.33)
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where / and ø are functions of u only, we have

£/, k = x' («) /h /“t + 0' (Û) nit T<k • 

Then, we get for the metric tensor in the new system

, (i)
— dik ~ dik’

(1) (1)
dik ~ dik ~ ^i,k ^k,l ~ c \mi rl,k ~ *i  *k)

+2 - x') ÿi ÿk + (ë2 - <£') (A ÿk + iTik ÿi) •
With

/ (ü) = \ M (il) dû, 0 (û) = ( c2 (ü) dû

tliis gives
dik = 2 c ("h "T -Wk)

(8.34)

(8.35)

(8.36)

(8.37)

(8.38)

Thus, the new system of coordinates is a ‘rectangular’ system and since

we have
zz' = f - .r' = t - / - (a- - /) = I - x = zz (8.39)

C = C (Ü) = c («') . (8.40)

On account of (8.32), the energy-momentum complex T'^ in this system is 
also given by (8.14).

The components of the tetrads (8.13) in the system (.r {) are

dai + (^a a (i ) ^2 (Z^a d') •
(8.41)

an expression which is not symmetrical in a and i. By a rotation of the 
tetrads of the form (8.26), which leaves unchanged, we get

(a) i ~ (^a + Ma (Ü ) ) ^(b) i ~ ^(a)i + Mai (Ü) • (802)
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Thus, if we choose

(fl) = ~ Ö c2 >'b>~ ~ mba. (8.43)

Xa)i takes the form

(8.44)

i.e. also in the rectangular system the tetrads can be chosen symmetrical in 
the tetrad- and vector indices.

Finally, a spatial rotation about the .r^-axis through the angle %/4 leads 
to a system of coordinates (x"j in which the metric has the other standard 
form (13) :

" _ I If
9i/c ~ rlik + Uik > (8.45)

where

(8.46)

and all the other components are zero. If we perform the same constant rota
tion of the tetrads which leaves unchanged, we see that also in 
this system the tetrads can be chosen symmetrical in a and i, i.e. for the 
rotated tetrads we have

h(a) i Vai o ’ (8.47)

Let us now consider a sandwich wave, where c'(u) = 0 outside an in
terval The momentum and energy per unit area in the (ÿ, z)-
plane of the system (x1) is then, in virtue of (8.14) and (8.9),

Pi = jj V dx = ~ I /k jj (^)2 dl~l > (8.48)

Pi =

It is also clear that pi transforms as a 4-vector under Lorentz transforma
tions

(8.50)
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in the direc-

(8.51)

Then,

(8.52)

and

(8.53)

with

(8.54)

Thus,

(8.55)

or

(8.56)I
I

ü = t — x = (cosh v - sinh v) u' 

u' = t' — x',

for, according to (2.34), T/ transforms as a tensor under such transforma
tions. Let us briefly consider a special Lorentz transformation 
tion of the x-axis, i.e.

in accordance with the transformation law for a four-momentum vector.
We can now always combine the Lorentz transformations (8.50) of the 

coordinates with the corresponding rotation of the tetrads, i.e.

n(a)i “^(a) n(b)i lla n(b)i (8.57)

which leaves the unchanged. Then it is clear that the components of 
the rotated tetrads in the transformed system of coordinates are again given
by

,, _ 1 (1)'
"(a) i — rlai Uik ’ (8.58)

( J- J * f
where y'tlc is the first order term of the transformed metric tensor gik.
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As regards energy and momentum, the wave packet of gravitational 
radiation with the four-momentum is quite analogous to a corresponding 
electromagnetic wave. From (8.49) we sec that the invariant norm of the 
four-momentum is zero, i.e.

= (8.59)

which corresponds to a vanishing “rest mass’’ of the packet.

Appendix

We start by establishing a few relations needed in the following calcula
tions. They are all consequences of the expressions (4.20) for aik and ßik 

and of the equations (4.9)—(4.11 ). First, we quote again the relations (4.34), 
(4.38), and some immediate consequences of these equations:

a| = 0, ocik f/k = 0, CLlknk = ot^

(a<*)o  Vk = 0 > (a<*)2  Pk = - M2 = a<* mk >

(Ms Pk=- Ms = sin 0 lk, (aa)0 (aa)0 = 8 c02.
(A.l)

Similarly, we have

Further,

<*ik  = 8 c2, (au)0 aik = 8 cc0 

^! = 3c2, ($)0 = 6cc0

aik mk = 2 c mz + (c2 + 2 c cot 0) 

aik lk = - 2 c/\

> (A. 2)

j (A. 3)

By dilferentation of these equations with respect to 0 and 99, respectively, 
and by using (4.11) and (A.l), we obtain

(aa)2 mk = al4 + (c2-2c cot 0) n? + c22 + 2 c2 cot d -

(a% = aU + cot 0 H cm* + (c2 + 2 c cot 0) + 2 cnp
(A. 4)

(M2 mk + (ai*) 3 = 2 a*4 + (c2 + 2 c cot 0) ml + A

Hence,
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(A. 5)

(A-6)

4 4

(A. 7)

and, therefore, by (4.27), (A.l), (A.2),

(A. 8)

the tetrad
of

On account of (4.25), (4.26), this gives

2 r

9 r

the text, 
the tensor 
the second

with A given by (3.8). Further, since

r2

r2

^r, si

ykli and the vector <J>1 for
power in 1/r. From (4.31) and (4.29)

9 
r

i.e. the equation (4.28) in
We shall now calc id ate 

field (4.29) up to terms 
we get

Yrsi ~ ^(a) s, i

1
— 2 9is, r ~ 9

^(.yat9s\i ^^rs,i 9ri,s 9si,r) ‘ ^3
1

yas, i 4" ~as, i

xl4 = - 2 J///1 - (c2 + 2 c cot O') in1, 
this may be written

(aa)0 - a* 4 + a* 4 + (A - 2 M)
f(k +r

yik,k =

(A. 9)
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Finally, by raising the two first indices by means of (4.21),

7k\ = gkr 9lsyrSi

- ritr - 2--2 0/* r «“ + >/’ «‘9 [(«<,)o »,• - <«<r)o /'J + 03.

Thus,

/z< = 27 t(a«)o ~ (a*)o  ^ZJ

+ 2f2 {“ /,fc + pZ + mk ~ m*

+ -j4 [(a/)s ** - (aifc)3 /Z] + [(ßi)o - (air)o aZr]

- S [(# )o - (^r)o 4 [a* (aW)° “ + °3 •

By contraction of this expression with respect to i and k, we gel by 
of (A.l), (A.2), and (A.6) for the vector <P!

- cc0 /.il - 6 cc0 + /? (ars)0 xrs. + O3

= 2p - 2 M + cc0] // + 03.

From this we see that 
K'n - 03 

and
= ^,2 fA - 2 M + ccol /A"i + °3 •

Further, from (A.10), by applying (A.l), (A.2), and (4.9),

= 272 { “ af + ai Inimk + oililk - cco ki} + O3

or, using (A.3),

^ = - ^2 {(2 M + CCo) + (C2 + 2 C COt 0) IUi f^k} + °3 • 

(A. 10) 

means 

(A.ll)

(A-12)

(A. 13)

(A-14)
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Therefore, since h = e2ß = 1 + O2, we get from (5.8), ( A.l 2)-(A.14),

iV'ft = 2 {(- 4 J/ + -4) W*  - (c2 + 2 C Cot 0) n1(/<*}  + 0„ (A. 15)
Z /Cl

which is the formula (5.9) in the text.
Our next task is to prove the formula (6.24) for the quantity

To the order required we have, just as in (6.16),

+ (A.16)

where now7
Zik = XtIii,l+X,'‘l/ti. (A. 17)

From (6.15) and (6.20) we get for this quantity

Z*  = /q + z/q + [a/*  (^)0 + Mrl (co/)0j /q/.q 

-1 y? OrZ + "Zr)o/h /h + °3 ■ (A. 18)

Here, the last term but one is also of the order of O3 on account of (6.9) 
and, by means of (6.10), we gel

Zk = (cokl + Mlk + Wrk Mrl)o Mi Ml

+ - [(cofcZ)2 ^^ + (0)^)2

+ rs^0 liMi + (^lk)3 M + O'z.

(A. 19)

The first term in this expression is zero on account of (6.7), and in the 
remaining terms a>kl can be treated as antisymmetric in k and I in virtue 
of (6. 9). Finally, since /q = ôj-nif we get

1
r sin 0 (^4)3'z

(colk\ nt+-(colk)2 mt + —-\ zi 4 r \ /z 1 r sm 0 (^k)3 lt

+ 7 (^>2 ml - mi ”l) + (W*Z)3 (ni h - k nl) + °3

(A. 20)
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and

lienee,

1
2 r sin 0

3’

= 7 ( "4 z)2 <nim/. - mt nx)+7^ O4 z)s (ni h - k nx) 

(COX^)2 , x (0/^)3 z . . , zV
77 (ny - mx nA) + <7777 (/?x0. “ nz) + O3

i

which is the formula (6.24) in the text.
Next, we shall calculate the complex created in a completely 

space by the infinitesimal transformation (8.21). Since

we get for the matrix tensor gik to the first order

with

dX'dX" ,m 
d xi d xk

~ Vik + %i, k + %k, i

To the same order we have

^kl-----^2 ^rk, I + 9rl, k 9kl, r) ~ , k, I

Further, since

we get

rm  er
1 Im * ,r,l‘

1 + r

m, I
$ J'

(A. 21)

(A-22) 

empty

(A. 23)

(A. 24)

(A. 25)

(A. 26)

(A. 27)

(A. 28)
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Thus, the Einstein Lagrangian (2.8) is to the second order

with
(A. 30)

the sameto

, r (A. 31)

(A. 32)

(A.33)

where are the quantities defined by (8.9) for which

(A.34)

(A. 35)
and

(A. 36)

coeffici-

new system 
we see that

and for Einstein’s 
order

In this case, we get at once from (A.29)-(A.34)

(V-9»“■),»- - □f'-O,

Finally, we shall show that a rotation of the tetrads (8.13) with 
ents -Q(ab) of the type (8.26) does not change the value (8.14) of the complex

defined by (2.31). To the first order, the rotated tetrads are

n a* - a* •k~ S ,k

fik /ik = 0 .

which in general does not vanish. Even if we require that the 
should be harmonic, we have in general From (A.28)
the new system is harmonic if

which only will make the first terms in (A.29) and (A.31) disappear.
On the other hand, if = <T(u) is a function of u = x4 - x1 only, so that 

the metric tensor (A.24) has the form of a plane wave, we have

p = tr m - A kt,s,r E ,r,s'—’ ’r, s,

= = ££-o

ftr i I _ 9 tfc tl, m _ tr , k ts
2 x ' ’ r, ‘—’ , r * , s, i

, / zk, m _ &n, k \ rr _ ifc o \ 
' , i ui ^Ef

energy-momentum complex (2.10) we get

(A. 37)
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Since both yai and coai are functions oî u = I -x only, we get to the same
order

z, _ h
Tiki lli ll(a) k: I

1 d) _ 1 (b
2 yki y^ +Mik (A. 38)

Here, [jy are the constant numbers defined by (8.9), and the prime means 
differentiation with respect to ii. Similarly, we get

(A. 39)

where we have used the relations

(i) (i)
yifcZ = 0’ 14 = 0 (A. 40)

following from (8.12).
By means of these expressions we can now calculate the Lagrangian 

(2.29) corresponding to the rotated tetrads to the second order, which gives

1 (D 1 0).
- yki /tl 2 - - yli ftk + a>lk /li1

1 <1> _ 1 <!>
2 yki ^i~2 y^ +Mik

-[^kf^i]' l“>lk Vi]'

= (™ik)' (“>lk) Pl Pi - ("\)' ("**)'  Pi Pi = ^-

> (A. 41)

Similarly, by means of (2.31),

+ (cozz)'(corÄ:)'zMV
Here we have again used the relations (A.40). Finally, we shall make use 
of the fact that œlm is antisymmetrical in / and m, i.e.

Mat.Fys.Medd.Dan.Vid.Selsk. 34, no. 3. 5
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Mlm (,>ml ’ M l O ’
(i) 

while ylm is symmetrical. Therefore, since

we get for the complex tk

(A. 43)

(A-44)

(A. 45)

which completes the proof of the invariance of the energy-momentum 
complex under the rotations of the type (8.26).
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